# AI-Cr-Mn (Aluminum-Chromium-Manganese)

#### V. Raghavan

The experimental data on this system up to 1972 were compiled by [1995Vil]. More recently, [1998Sch] clarified the phase relationships in the Al-rich region. They found a continuous solid solution µ between CrAl<sub>4</sub> and MnAl<sub>4</sub> and also identified a new ternary phase of monoclinic symmetry. The update of this work by [2008Rag] presented for Al-rich alloys a liquidus projection and three isothermal sections at 800, 750, and 700 °C. Very recently, [2009Gru] and [2009Bal] studied this system in the compositional range of 60-100 at.% Al and presented liquidus and solidus projections and a number of isothermal sections between 1010 and 560 °C. They accepted the version of the Al-Mn phase diagram by [1987Mur], in respect of the peritectoidal formation of  $\lambda Al_4Mn$  and the existence of the Cu<sub>5</sub>Zn<sub>8</sub>-type of cubic phase  $\gamma_1$ . As there is no general agreement in the literature about these features, the results of [2009Gru] and [2009Bal] may be accepted provisionally.

### **Binary Systems**

The intermediate phases in the Al-Cr system [2008Gru1] are: Al<sub>7</sub>Cr (V<sub>7</sub>Al<sub>45</sub>-type monoclinic, denoted  $\theta$ ), Al<sub>11</sub>Cr<sub>2</sub> (CrAl<sub>5</sub>-type monoclinic, denoted  $\eta$ ), Al<sub>4</sub>Cr (hexagonal, *P*6<sub>3</sub>/*mmc*, denoted  $\mu$ ), Al<sub>3</sub>Cr (triclinic), AlCr<sub>2</sub> (MoSi<sub>2</sub>-type tetragonal), and an unconfirmed low-temperature phase X at ~75 at.% Cr. Between 30 and 41 at.% Cr, five phases were

 $\beta Al_8 Cr_5$ , with no well-established phase boundaries between them. The work of [2008Gru1] shows only two phases in this region. The high-temperature phase denoted  $\gamma_1$  is cubic (Cu<sub>5</sub>Zn<sub>8</sub>-type) and transforms on cooling to  $\gamma_2$ , the transition temperature decreasing from 1140 to 1060 °C with increasing Al content. The  $\gamma_2$  phase is rhombohedral (Al<sub>8</sub>Cr<sub>5</sub>-type). The Al-Mn phase diagram [1987Mur, 1996Liu, 2008Gru2] depicts the following intermediate phases: Al<sub>12</sub>Mn (Al<sub>12</sub>Wtype cubic, denoted G), Al<sub>6</sub>Mn (Al<sub>6</sub>Mn-type orthorhombic),  $\lambda Al_4Mn$  (hexagonal, space group  $P6_3/m$ ),  $\mu Al_4Mn$  (hexagonal, P6<sub>3</sub>/mmc), Al<sub>11</sub>Mn<sub>4</sub>(HT) (Al<sub>3</sub>Mn-type orthorhombic, denoted T), Al<sub>11</sub>Mn<sub>4</sub>(LT) (Al<sub>11</sub>Mn<sub>4</sub>-type triclinic, denoted v), Al<sub>8</sub>Mn<sub>5</sub> ( $\sim$ 31.4-50 at.% Mn;  $D8_{10}$ , Al<sub>8</sub>Cr<sub>5</sub>-type rhombohedral, denoted  $\gamma_2$ ),  $\gamma$  (34.5-52 at.% Mn; bcc) and  $\epsilon$  (55-72 at.% Mn; cph). Following [1987Mur], [2009Gru] and [2009Bal] accepted the existence of  $\gamma_1$  (D8<sub>2</sub>, Cu<sub>5</sub>Zn<sub>8</sub>-type cubic), showing three phases in the ternary phase equilibria:  $\gamma_2$ ,  $\gamma_1$ , and  $\gamma$  (bcc  $\gamma$  redesignated as  $\beta$  by [2009Gru] and [2009Bal]).

reported earlier:  $\alpha Al_9Cr_4$ ,  $\beta Al_9Cr_4$ ,  $\gamma Al_9Cr_4$ ,  $\alpha Al_8Cr_5$ , and

## **Ternary Phase Equilibria**

Ś

0

With starting metals of 99.999% Al, 99.98-99.99% Cr, and 99.95% Mn, [2009Gru] and [2009Bal] levitationmelted a number of alloys in the region of 60-100 at.% Al. For determining the liquidus and solidus surfaces,



ŝ

μ

ุ่รุก

bcc

2

[2009Bal]

620

0





Fig. 3 Al-Cr-Mn isothermal section at 1010 °C for Al-rich alloys [2009Gru]



Fig. 4 Al-Cr-Mn isothermal section at 950 °C for Al-rich alloys [2009Gru]

differential thermal analysis was carried out at heating/ cooling rates of 1-10°C/min [2009Bal]. For isothermal studies, the samples were annealed between 1010 and 560 °C for durations up to 94-1490 h [2009Gru]. The phase equilibria were studied with x-ray powder diffraction and electron diffraction in a transmission electron microscope. Local compositions were measured with the energy dispersive x-ray analyzer attached to the scanning electron microscope.

The liquidus projection constructed by [2009Bal] is shown in Fig. 1. An enlarged view of the surface near the



Fig. 5 Al-Cr-Mn isothermal section at 900 °C for Al-rich alloys [2009Gru]



Fig. 6 Al-Cr-Mn isothermal section at 800 °C for Al-rich alloys [2009Gru]

Al corner is shown. The primary fields of crystallization are marked. Four U-type transition reactions U<sub>1</sub> (~1000 °C), U<sub>2</sub> (998 °C), U<sub>3</sub> (693 °C), and U<sub>4</sub> (658 °C), two ternary peritectic reactions P<sub>2</sub> (718 °C) and P<sub>3</sub> (~705 °C) and a ternary eutectic reaction E<sub>1</sub> (657 °C) are the solid-liquid reactions seen in Fig. 1 [2009Bal]. The binary phases  $\lambda$ and Al<sub>6</sub>Mn nucleate in the ternary region through the peritectic reactions P<sub>2</sub> and P<sub>3</sub>, respectively. The solidus projection constructed by [2009Bal] is shown in Fig. 2. The temperatures marked in the three-phase fields are those



Fig. 7 Al-Cr-Mn isothermal section at 715 °C for Al-rich alloys [2009Gru]



Fig. 8 Al-Cr-Mn isothermal section at 685 °C for Al-rich alloys [2009Gru]

of the invariant reactions which yield the three-phase equilibria.

Isothermal sections in the Al-rich region were constructed by [2009Gru] at 1010, 950, 900, 800 715, 685, 661, 600, and 560 °C. At 1010 °C (Fig. 3), the Al-rich liquid is present over a large area near the Al corner. Al<sub>4</sub>Cr ( $\mu$ ) dissolves up to 5.5 at.% Mn. The rhombohedral  $\gamma_2$ dissolves ~26.5 at.% Mn at the high Al limit. Near the Al-Mn side, the Al-Mn  $\gamma$  phase (bcc) is present. At 950 °C (Fig. 4), the rhombohedral  $\gamma_2$  phases of the Al-Cr and Al-Mn binaries form a continuous solid solution. Al<sub>11</sub>Mn<sub>4</sub>



Fig. 9 Al-Cr-Mn isothermal section at 560 °C for Al-rich alloys [2009Gru]

(HT) (denoted T) is stable and dissolves 12.5 at.% Cr. Al<sub>4</sub>Cr (µ) dissolves up to 17 at.% Mn. At 900 °C (Fig. 5), the Al-Cr and Al-Mn µ phases form a continuous solid solution. Al<sub>11</sub>Mn<sub>4</sub> (LT) (denoted v) is stable and dissolves up to 16.5 at.% Cr. At 800 °C (Fig. 6), the Al-Cr η phase is stable and dissolves up to 9 at.% Mn. The T phase is not stable. The low temperature triclinic form v dissolves up to 22 at.% Cr. At 715 °C (Fig. 7), the Al-Cr phases  $\theta$ and  $\eta$  are stable and dissolve up to 5.5 and 14.5 at.% Mn, respectively. The Al<sub>4</sub>Mn- $\lambda$  phase is present in the ternary region [2009Gru]. At 685 °C (Fig. 8), the  $\lambda$  phase has extended up to the binary side and Al<sub>6</sub>Mn has appeared. At 560 °C (Fig. 9), Al<sub>12</sub>Mn (G) is stable in the ternary region. It may be noted that the G phase forms only below 512 °C in the Al-Mn binary system. The G phase forms tie-lines with (Al),  $\theta$ ,  $\eta$  and Al<sub>6</sub>Mn. [2009Bal] presented a reaction sequence that incorporates the invariant reactions on the liquidus surface as well as solid-state reactions.

#### References

- **1987Mur:** J.L. Murray, A.J. McAlister, R.J. Schaefer, L.A. Bendersky, F.S. Biancanielo, and D.L. Moffatt, Stable and Metastable Phase Equilibria in the Al-Mn System, *Metall. Trans. A*, 1987, **18**, p 385-392
- **1995Vil:** P. Villars, A. Prince, and H. Okamoto, Al-Cr-Mn, *Handbook of Ternary Alloy Phase Diagrams*, ASM International, Materials Park, OH, 1995, **3**, p 3128-3143
- **1996Liu:** X.J. Liu, R. Kainuma, H. Ohtani, and K. Ishida, Phase Equilibria in the Mn-Rich Portion of the Binary System Mn-Al, *J. Alloys Compd.*, 1996, **235**, p 256-261
- 1998Sch: T. Schenk, M. Durand-Charre, and M. Audier, Liquid-Solid Equilibria in the Al-Rich Corner of the Al-Mn-Cr System, J. Alloys Compd., 1998, 281, p 249-263

- **2008Gru1:** B. Grushko, B. Przepiorzynski, and D. Pavlyuchkov, On the Constitution of the High Al-Region of the Al-Cr Alloy System, *J. Alloys Compd.*, 2008, **454**, p 214-220
- **2008Gru2:** B. Grushko and S. Balanetskyy, A Study of Phase Equilibria in the Al-Rich Part of the Al-Mn Alloy System, *Int. J. Mater. Res.*, 2008, **99**(12), p 1319-1323
- 2008Rag: V. Raghavan, Al-Cr-Mn (Aluminum-Chromium-Manganese), J. Phase Equilib. Diffus., 2008, 29(2), p 171-172
- **2009Bal:** S. Balanetskyy, W. Kowalski, and B. Grushko, Liquidus, Solidus and Reaction Scheme of the Al-Rich Part of the Al-Cr-Mn, *J. Alloys Compd.*, 2009, **474**, p 147-151
- **2009Gru:** B. Grushko, W. Kowalski, D. Pavlyuchkov, S. Balanetskyy, and M. Surowiec, On the Constitution of the Al-Rich Part of the Al-Cr-Mn System, *J. Alloys Compd.*, 2009, **468**, p 87-95